Strategies for Integrative Building Design

Per Heiselberg
Department of Civil Engineering
Aalborg University
Background

- The European Union has taken a strong leadership role in promoting energy efficiency in buildings in Europe by approving **The Directive on the Energy Performance of Buildings**
- The Directive is the most powerful instrument developed to date for the building sector in Europe
- There is a high socioeconomic potential for energy savings using existing technologies
- The main challenges in the future is to develop and optimize new competitive building solutions that integrates renewable energy to achieve the goal of **Zero energy buildings**.
Development Plans for Maximum Energy Use in New Buildings in Denmark

Primary Energy Use (kWh/m²·y)

- Residence (150 m²)
- Office (1500 m²)

From Component to Concept Level

Energy Use

Component level

System level

Concept level

2006 2015
Design Team

Reference: Löhnert, G., IEA SHC Task 23
New Design Process

What

- integral
- creative
- achievable

Where

- realizable
- feasible
- coordinated

- univocal
- detailed
- makable

Step 1 + 2
Concept design phase
Preliminary design
- Build examples
- RBE examples

Step 3 + 4 + 5
System design phase
Final design
- Manufacturer's specifications

Step 6
Component design phase
Detailing phase
- System
- Dimensioning of components

Requirements of the client and regulations
Architecture and esthetics
Climate conditions and urban context
Design Strategy and Technical Solutions

- **Reduce Demand**
 - Optimize form and zoning, insulation, air tightness, heat recovery, efficient electric lighting and equipment, low pressure drops, etc
 - Apply Responsive Building Elements
- **Utilize renewable energy sources**
 - Provide optimal use of passive RES: solar heating, daylighting, natural ventilation, night cooling, earth coupling
 - Apply active renewable energy sources
 - Optimize the use by application of low exergy systems.
- **Efficient use of fossil fuels**
 - Use least polluting fossil fuels in an efficient way,
 - Provide intelligent demand control of systems
Design steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Heating</th>
<th>Cooling</th>
<th>Lighting</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
BASIC DESIGN</td>
<td>Conservation
1. Surface to volume ratio
2. Zoning
3. Insulation
4. Infiltration</td>
<td>Heat Avoidance
1. Reduction of internal heat gains
2. Reduction of external heat gains
4. Thermal mass</td>
<td>Daylighting
1. Room height and shape
2. Zoning
3. Orientation</td>
<td>Source Control
1. Surface material emission
2. Zoning
3. Local exhaust
4. Location of air intake</td>
</tr>
<tr>
<td>Step 3
INTEGRATED SYSTEM DESIGN</td>
<td>Application of Responsive Building Elements
1. Intelligent facade
2. Thermal mass activation
3. Earth coupling
4. Control strategy</td>
<td>Application of Responsive Building Elements
1. Intelligent facade
2. Thermal mass activation
3. Earth coupling
4. Control strategy</td>
<td>Daylight Responsive Lighting Systems
1. Intelligent façade
2. Interior finishes
3. Daylight control strategy
4. …</td>
<td>Hybrid Ventilation
1. Building integrated ducts
2. Overflow between rooms
3. Control strategy
4. …</td>
</tr>
<tr>
<td>Step 4
DESIGN OF LOW EXERGY MECHANICAL SYSTEMS</td>
<td>Low Temperature Heating System
1. Application of renewable energy
2. Floor/wall heating
3. …</td>
<td>High Temperature Cooling System
1. Application of renewable energy
2. Floor/wall cooling
3. …</td>
<td>High Efficiency Artificial Light
1. LED
2. …</td>
<td>Low Pressure Mechanical Ventilation
1. Efficient air distribution
2. Low pressure ductwork, filtration and heat recovery
3. Low pressure fan
4. …</td>
</tr>
</tbody>
</table>
TEAM+ appointed winner
28.09.09

Architects ARKITEMA,
Leif Hansen Consulting Engineers A/S,
Esbensen Consulting Engineers A/S,
FAKTOR 3 Aps,
DONG Energy,
Thornton Thomassetti,
Housing Organisation Ringgården,
BAU-HOW Denmark.
Energy Concept

- **Reduction of energy demand**
 - High level of thermal insulation (U-value envelope 0.08 - 0.1 W/m²K, windows 0.9 W/m²K), avoidance of thermal bridges
 - Airtight construction (n₅₀<0.6 h⁻¹)
 - Thermal mass for buffering and natural cooling (natural night ventilation)
 - Solar and heat protection glass, solar shading
 - Hot water for washing of dishes and cloth
 - Airing cupboard and cooler

- **Application of renewable energy**
 - PV-system (cover yearly electricity demand, 236kW_{peak})
 - PV/T Solar Thermal System (DHW (60% coverage) and heat, 142kW_{peak})

- **Efficient energy conversion**
 - Heat pump (DHW and heating, COP 3.7 - 4.0)
 - Demand controlled balanced mechanical ventilation system with high efficient heat recovery (85%, counter flow heat exchanger) and SEL 1.1 kJ/m³
 - Low temperature floor heating panels
 - Optimized building lighting systems (LED)

- **Total primary energy use**
 - 13 kWh/m²/yr for heating, cooling and ventilation (80% less than standard)
The first Active House – Home for life

Energy need and production from solar [kWh/m²/year]

Energy production solar thermal and solar cells

Electricity household

-14

Electricity technique

-8

Hot water and heating

-33

VKR Holding
VELFAC, VELUX
WindowMaster
Sonnenkraft
AART arkitekter
Esbensen Rådg.
Ingeniører
KFS-Boligbyg
Thanks for your attention